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Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore,
United States

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, for which aging
remains the major risk factor. Aging is under a consistent pressure of increasing
brain entropy (BEN) due to the progressive brain deteriorations. Noticeably, the brain
constantly consumes a large amount of energy to maintain its functional integrity, likely
creating or maintaining a big “reserve” to counteract the high entropy. Malfunctions of
this latent reserve may indicate a critical point of disease progression. The purpose of
this study was to characterize BEN in aging and AD and to test an inverse-U-shape BEN
model: BEN increases with age and AD pathology in normal aging but decreases in the
AD continuum. BEN was measured with resting state fMRI and compared across aging
and the AD continuum. Associations of BEN with age, education, clinical symptoms,
and pathology were examined by multiple regression. The analysis results highlighted
resting BEN in the default mode network, medial temporal lobe, and prefrontal cortex
and showed that: (1) BEN increased with age and pathological deposition in normal aging
but decreased with age and pathological deposition in the AD continuum; (2) AD showed
catastrophic BEN reduction, which was related to more severe cognitive impairment and
daily function disability; and (3) BEN decreased with education years in normal aging,
but not in the AD continuum. BEN evolution follows an inverse-U trajectory when AD
progresses from normal aging to AD dementia. Education is beneficial for suppressing
the entropy increase potency in normal aging.

Keywords: resting state fMRI, entropy, pathology, reserve, AD, MCI

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease that has impacted millions of elderly
people but still remains incurable (Ferri et al., 2005; Reitz and Mayeux, 2014). Although
AD has been well characterized by AD pathology and clinical symptoms, a major barrier
to research progress is the unclear mechanism for how and when normal aging progresses
into AD dementia (Kumar and Singh, 2015; Mehta and Yeo, 2017) and why AD symptoms
often emerge many years later than AD pathology. This pathology vs. symptom discrepancy
(Jack et al., 2010; Jack and Holtzman, 2013) suggests that there may exist a reserve of brain
function according to the seminal ‘‘cognitive reserve’’ (CR; Stern, 2006; Stern et al., 2018)
model. This reserve may compensate brain damage–induced functional abnormalities in
normal aging but fails to do that after disease conversion. To characterize the brain function
reserve, we need a more tangible proxy. One candidate is the resting-state brain activity
which matches the latent function reserve in two perspectives: first, it is an ongoing process
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non-specific to any overt brain function; second, it has been
postulated to play a role in brain function facilitation (Raichle
et al., 2001; Raichle and Gusnard, 2002; Raichle, 2011). Resting-
state fMRI (rsfMRI) represents the most widely used tool for
studying resting brain activity and has been used to assess
neural correlates of brain reserve through the inter-regional
functional connectivity (FC) analysis (Arenaza-Urquijo et al.,
2013; Bozzali et al., 2015; Marques et al., 2016; Franzmeier
et al., 2017; Li et al., 2020). An overall picture revealed by these
studies is that higher CR measures are related to stronger FC
in distributed brain regions including the default mode network
(DMN) area and weaker FC in other restricted focal regions.
Because FC is defined by the inter-regional signal correlation in
the seed-based FC (Biswal et al., 1995) or the associations to a
common temporal fluctuation pattern in the spatial independent
component decomposition (Calhoun et al., 2001; Hyvärinen
et al., 2001; Beckmann and Smith, 2004), it does not tell anything
specific to regional brain activity.

In this study, we proposed entropy of each local voxel
as a regional proxy of brain reserve. Entropy is a physical
measure for a dynamic system with high entropy indicating
less order and more irregularity. It may be informative for
delineating the aforementioned AD pathology vs. symptom
discrepancy because aging is known to have progressive
brain deteriorations (Hayflick, 2004; Drachman, 2006) which
inevitably increase the brain entropy. High entropy corresponds
to low temporal coherence, which is detrimental to brain
functional organization and has to be counteracted to keep the
normal brain functionality. Because brain reserve is defined by
brain function facilitation and compensation, assessing entropy
of functional brain activity may provide a direct outcome
measure of the latent brain reserve. In a pilot study (Wang,
2020a,b; full article under separate review) based on data from
862 healthy adults from the human connectome project (Van
Essen et al., 2013), we found that brain entropy (BEN) in
the DMN (including precuneus, bilateral parietal cortex, and
part of temporal cortex) and the executive control network
(ECN; including the dorsolateral prefrontal cortex and lateral
parietal cortex) increases with age but decreases with education
years (an indicator of cognitive reserve for compensating brain
dysfunctions) and that lower BEN inDMNand ECN is associated
with better performance of cognitive functions. These data
suggest the feasibility of BEN for characterizing the latent brain
reserve compensation outcome. Although the compensationmay
be sufficient in normal aging, they may become insufficient
when disease progresses, which can reciprocally trigger reserve
overactions, leading to a catastrophic reduction of BEN as
found in previous biophysiological recording–based AD entropy
studies (Stam et al., 2003; Jeong, 2004; Abásolo et al., 2006;
Gómez and Hornero, 2010; Mizuno et al., 2010; Yang et al.,
2013). To explain this apparent opposed entropy change pattern
in normal aging and AD, we proposed a heuristic BEN model as
shown in Figure 1. This model considers low BEN in DMN and
ECN as beneficial for normal aging because low brain entropy
corresponds to high temporal coherence which is evidenced to
be important for brain function (Buzsáki and Draguhn, 2004;
Buzsaki, 2006; Schroeder and Lakatos, 2009; Saleh et al., 2010;

Buzsáki and Watson, 2012; Henry and Obleser, 2012; Lega
et al., 2012; Thut et al., 2012; Calderone et al., 2014; Reinhart
and Nguyen, 2019). However, in AD, our model predicts a
detrimental large BEN reduction in DMN/ECN, indicating a
failure of the functional compensation role of brain reserve in
AD (Stern, 2006, 2012; Stern et al., 2018). The accumulating
brain errors or deteriorations will increase BEN and the risk
of brain dysfunction if no compensations occur. This potency,
however, can be substantially counteracted by brain reserve or
other compensatory mechanisms, resulting in a slowly increasing
and then flat topping BEN evolution curve in normal aging
(the dashed blue line in Figure 1). When the BEN increase
latency reaches a critical point where brain dysfunction cannot be
fully compensated anymore, reserve overactionmay be triggered,
leading to an apparent BEN reduction (the red solid curve in
Figure 1). When disease progresses, BEN reduction may be
accelerated further by other detrimental factors such as the
accumulation of Aβ deposition and perfusion deficits. Both Aβ

decomposition and hypoperfusion may cause or be associated
with BEN reductions through the CBF vs. brain coherence
associations: lower CBF correlates with higher brain activity
coherence (Sharbrough et al., 1973; Foreman and Claassen, 2012;
higher coherence corresponds to lower BEN).

The main purpose of this study was to assess the feasibility
of BEN as an outcome measure of the latent brain function
reserve and to evaluate the hypothetical BEN model by
leveraging the relatively large data from the AD Neuroimaging
Initiative (ADNI)1 and our recently developed rsfMRI-based
BEN mapping tool (Wang et al., 2014). The model was assessed
using the cross-sectional ADNI rsfMRI data. We hypothesized
that AD patients have lower BEN than cognitively healthy
elderlies; BEN increases with age in normal aging but not in
AD. The association of BEN to function reserve was examined
through the correlation between BEN and education, cognitive
function measures, and AD pathology measures. Education is a
main contributing factor of cognitive reserve (Stern et al., 2018).
Longer education years have been demonstrated to be beneficial
for combating cognitive impairments. In accordance with the
BEN model, we hypothesized that longer education years are
associated with reduced BEN in normal aging but not in AD. The
entire study reported in this paper is a full expansion of a small
sample-based preliminary study (Li and Wang, 2016).

MATERIALS AND METHODS

Human Subjects
All human subjects’ data included in this study were downloaded
from the ADNI database1. Reanalysis of ADNI data was
approved by institutional review boards of all participating
institutions and written informed consent was obtained from
all participants or authorized representatives. Subjects were
limited to those with rsfMRI data acquired with the traditional
gradient-echo-weighted echo-planar imaging sequence by May
2018. Full inclusion and exclusion criteria for ADNI are
described at www.adni-info.org. In brief, patients with mild

1http://www.adni-info.org
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FIGURE 1 | A hypothetical brain entropy (BEN) model for normal aging and Alzheimer’s disease (AD). The dotted line shows the latent BEN evolution trend as a
result of the aging-related accumulated brain deteriorations. The dashed line represents the actual BEN evolution curve after brain reserve compensation which
imposes negative entropy brings down the total BEN. Catastrophic BEN reduction may start at the disease conversion time due to a potential overaction of the
brain reserve.

cognitive impairment (MCI) were classified essentially in the
manner described by Petersen (2004), but were then further
divided into ‘‘early’’ and ‘‘late’’ groups (i.e., EMCI and LMCI,
respectively) based on performance on the Wechsler Memory
Scale–Revised Logical Memory II (WMS-LM). The EMCI group
was defined based on scores between the cutoff of normal and
that of the LMCI group. A total of 211 subjects whose rsfMRI
data met all QC criteria were analyzed. Detailed characteristic
information and the number of subjects in each sub-group are
listed in Table 1.

MRI Data Acquisition
Both high-resolution structural MRI data and rsfMRI data
were downloaded from the ADNI website1. The structural
images were acquired using a 3D magnetization-prepared rapid
acquisition with gradient echo T1-weighted sequence with
the following parameters: repetition time/echo time/inversion
time = 2,300/2.98/900 ms, 176 sagittal slices, within plane field of
view = 256 × 240 mm2, voxel size = 1.1 × 1.1 × 1.2 mm3,
flip angle = 9◦, bandwidth = 240 Hz/px. rsfMRI was
acquired using a gradient echo-weighted echo-planar
imaging sequence with the following acquisition parameters:
repetition time/echo time = 3,000/30 ms, number of axial
slices = 48, slice thickness = 3.3, flip angle = 80◦, within
plane field of view = 212 × 212 mm2, and number of
timepoints = 140.

MRI Data Preprocessing
MR image preprocessing was conducted using the pipeline
included in BENtbx (Wang et al., 2014) with the following steps:
slice timing correction, motion correction, temporal nuisance
correction, spatial smoothing, inter-modality coregistration
(structural image and rsfMRI images), and spatial normalization.
These procedures were implemented in Matlab m-script.
Coregistration and spatial normalizationwere based on functions
provided by SPM (version 122); other steps were based on
custom code written by the author. The first two rsfMRI
images were excluded to allow rsfMRI signal reach the steady
state. Subjects included in the following analyses had no more
than 2 mm translational motions and no more than 2◦ of
angular motions. Subjects with mean framewise displacement
(Power et al., 2012) greater than 0.5 mm were excluded
too. Residual motions were regressed out from the rsfMRI
time series in the temporal nuisance correction step. The
Diffeomorphic Anatomical Registration Through Exponential
Lie Algebra algorithm (Ashburner, 2007) implemented in
SPM12 was used to generate a local brain template based on
all subjects’ gray matter and white matter probability maps. The
template was registered into the Montreal Neurological Institute
(MNI) standard space using a linear affine transformation.
With these two transforms, each individual subject’s rsfMRI

2https://www.fil.ion.ucl.ac.uk/spm/
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TABLE 1 | Human subject characteristics.

Diagnosis group HC SMC EMCI LMCI Alzheimer’s disease P-value

Number 54 27 58 38 34 –
Gender (M/F) 24/28 12/15 22/35 24/14 16/18 0.253
Age (mean ± SD, range) 75.3 ± 6.96, 65–95 72.44 ± 5.49, 65–83 71.53 ± 6.93, 56–89 71.89 ± 8.26, 57–88 72.47 ± 7.06, 56–87 0.082
APOE ε4 allele 30.00% 29.63% 45.61% 35.89% 70.59% 1.9E−03
MMSE (mean ± SD) 27.56 ± 5.71 28.78 ± 1.48 25.93 ± 7.94 26.59 ± 6.12 22.21 ± 4.47 1.59E−4

P-values were assessed due to significant differences among diagnosis groups and were computed using one-way ANOVA (except for gender using χ2 test). HC, healthy control;
SMC, significant memory concern; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; MMSE, Mini-Mental State Examination; values in bold signify p < 0.05.

was mapped into the MNI space for group-level analysis. BEN
calculation was performed for each voxel of the preprocessed
rsfMRI data using two iterative processes. Given the rsfMRI
time series of any voxel, a sliding window with a length
of m consecutive timepoints was used to extract all possible
data segments as illustrated by the colored rectangles overlaid
on the time series and the associated arrows. For the i-th
data segment, its Chebyshev distance to another segment was
calculated. If the distance was smaller than the cutoff threshold
r, it was considered as a ‘‘match’’. r and m were selected to
be r = 0.6 and m = 3 as evaluated in Wang et al. (2014).
The same procedure was iterated until the seed segment was
compared with all other segments and the total number of
matches was recorded as Bm

i (r) and the sum of Bm
i over all

segments was recorded by Bm
i (r). Next, the sliding window

length was increased by 1 to be m + 1. The aforementioned
matching process was repeated to get the total number ofmatches
A(m + 1)(r) for all segments with a length of m + 1. Following
the Sample Entropy formula, entropy was finally calculated as
the logarithm of the ratio of Bm(r)/A(m + 1)(r). This process
is theoretically equivalent to calculating the negative natural
logarithm of the conditional probability that two temporal
segments of the entire data time series similar for m points
remain similar for m + 1.

Cerebrospinal Fluid (CSF) Biomarker
The amyloid-β 1–42 peptide (Aβ1–42) and total tau (t-tau)
measured in the baseline CSF samples were obtained from the
ADNI database1. Sample acquisition and quality control of CSF
were performed as described previously (Shaw et al., 2009). Mean
and SD of t-tau/Aβ1–42 ratio were calculated, while subjects with
greater or smaller than 6 SD from the mean value were regarded
as outliers. Only one subject was out of this range and was
subsequently excluded from the following analysis.

Statistical Analysis
An ANOVA model was used to examine BEN difference
between controls and patients at different disease stages. Disease
diagnosis vs. pathology interactions weremodeled. Age, sex, race,
and education were included as variables. Cross-sectional BEN
difference and age, sex, and education effects were assessed using
ad hoc contrast analysis as mentioned previously. Disease vs.
age, sex, and education interactions on BEN were examined.
Voxelwise multiple regressions were used to assess age, sex,
and education effects and the associations of BEN to delayed
recall (for memory), memory test results in the Rey Auditory
Verbal Learning Test (RAVLT; Schmidt, 1996), the total score

of Functional Activity Questionnaire (FAQ; Pfeffer et al., 1982;
Marshall et al., 2015), and the Mini-Mental State Examination
(MMSE). The rationales for choosing these neuropsychological
measures are memory dysfunction is a hallmark of clinical AD
symptoms and is widely assessed by delayed recall and RAVLT;
AD patients present characteristic daily function impairment
which can be measured by FAQ; MMSE is the most often
used short screening tool for measuring the overall cognitive
impairment. Sex, age, and education level were included as
nuisance covariates in these regression models. Additional
multiple-regression models were used to assess associations of
BEN vs. CSF Aβ (Aβ1–42) concentration.

Data Availability
BENtbx used in this study is available from https://www.cfn.
upenn.edu/∼zewang/BENtbx.php. ADNI data are available from
loni.usc.edu/adni. Analysis results are available from the author
by request.

RESULTS

Age difference was significant only between controls and EMCI
(p = 0.02). Figure 2 shows the one-way ANOVA results. BEN
was significantly (F-test, p < 0.05, family-wise error corrected)
different within the whole brain among the five populations
(elderly controls, significant memory concern (SMC), EMCI,
LMCI, and AD). The hot spots overlaid on the three axial image
slices in Figure 2 are the post hoc voxelwise BEN difference
between AD and controls. At p < 0.005, cluster size > 300
[AlphaSim (the updated version) corrected], AD showed reduced
BEN in MTL including hippocampus (HIPP), inferior temporal
cortex, precuneus, and parietal cortex (part of the DMN). No
BEN increase was observed across the brain in AD as compared
with controls. BEN was extracted from a voxel in left parietal
cortex as marked by the yellow dotted cross. Both the scatter plot
and the fitted curve demonstrate an inverse-U shaped transition
pattern of BEN from cognitively normal elderly controls to
AD: BEN slightly increased from controls to SMC, then to
EMCI, but quickly dropped to be below BEN of controls in
LMCI, and fell further in AD at an accelerated pace. This curve
was very similar at different voxels in DMN, PFC, and other
brain regions.

Figure 3 shows the age and education effects of BEN. Controls
showed age-related BEN increase [Figure 3A; p < 0.005, cluster
size > 200 (corrected using AlphaSim)] in precuneus, MTL,
and PFC. Education years were negatively correlated to BEN in
controls (Figure 3C). By contrast, the age effects were mostly
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FIGURE 2 | Cross-sectional brain entropy (BEN) profile identified from ADNI rsfMRI. BEN slightly increased from old controls to significant memory concern (SMC)
and then early mild cognitive impairment (EMCI), but reduced from EMCI to late mild cognitive impairment (LMCI), and then AD at an accelerated pace. The inset
figure shows the post hoc control > AD (red spots in the three image slices) BEN difference (P < 0.005, cluster size > 300 corrected). The gray curve was the fitted
line of BEN from different populations from the same position marked by the yellow cross. Color bar indicates the display window for the t-map shown in the three
image slices.

flipped to the opposite direction (a negative correlation) in
the combined patient group (SMC + EMCI + LMCI + AD;
Figure 3B) and no education effects were found in the composite
patient group at all (Figure 3D).

Figure 4 shows the results of BEN vs. AD pathology
association analyses. AD pathology was measured by CSF
Aβ1–42 peptide concentration with lower CSF Aβ meaning
higher brain Aβ depositions. Controls and patients showed
opposite BEN vs. CSF Aβ associations in nearly the same
brain regions. As CSF Aβ1–42 is inversely related to beta
amyloid depositions in the brain (Grimmer et al., 2009), the
negative CSF Aβ-BEN correlation found in controls (Figure 4A)
means BEN in DMN, MTL, lateral PFC, and visual cortex
may increase with brain beta amyloid depositions. In patients
(Figure 4B), BEN decreases with brain beta amyloid depositions.
Figure 4C shows the scatter plots for all subgroups. Controls
and SMC showed opposite BEN vs. CSF Aβ relationship
though the correlation was statistically significant only in
controls (r2 = 0.282, p = 4.3e−4) and LMCI (r2 = 0.14,
p = 0.04). Similar BEN vs. AD pathology associations were
found when we used tau/Aβ ratio or p-tau/Aβ ratio as the
pathology indicator.

Figure 5 shows the associations of BEN to cognitive and daily
functional impairment for the composite patient group. Age,
sex, and education years were regressed out. Both Figure 5A
(delayed-recall) and 5C (RAVLT) show a positive correlation
of BEN to memory function, meaning that a lower BEN in the
elucidated regions (DMN, MTL) corresponds to a more severe
memory deficit. BEN in DMN and hippocampus was positively
related to MMSE (Figure 5B), suggesting patients with more

cognitive impairments have lower BEN. Lower BEN in DMN,
temporal cortex, and PFCwas further related tomore severe daily
functional disability as measured by FAQ.

DISCUSSION

We assessed resting state BEN as a proxy for assessing the latent
brain reserve and proposed a heuristic inverse-U shape BEN
model to explain the aging-related functional brain alterations
and the pathology vs. AD symptom discrepancy. The validity
of BEN as a reserve proxy was examined by the BEN vs.
age, education, and cognitive performance association studies.
The inverse-U shape model was evaluated by comparing BEN
across normal aging and patients with different stages of disease
in the AD continuum as well as by the neurobehavioral and
pathological association analyses. The major findings are as
follows: (1) the cross-sectional analysis demonstrated that BEN
first slightly increased from normal aging to SMC and to EMCI,
but quickly fell below the BEN level of normal controls in LMCI,
and reduced further in AD with an accelerated pace; (2) BEN
presented different age and education effects in normal aging
and AD continuum. It increases with age in normal aging but
decreases with age in the AD continuum. It decreases with
education years in normal aging, but is not correlated with
education any more in the AD continuum; (3) BEN showed
totally opposite associations with CSF Aβ depositions. The
BEN vs. CSF Aβ correlation was negative in normal aging
but became positive in the AD continuum; and (4) low BEN
was correlated with more severe cognitive impairment and
daily function disability in the AD continuum. These findings
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FIGURE 3 | Age and education effects of brain entropy (BEN). Controls and patients [mild cognitive impairment (MCI) and AD] showed opposite BEN vs. age
relationship in most part of the brain (A,B). Education years correlated with reduced BEN in default mode network in controls (C), but not in patients (D). Red and
cool colors mean positive and negative correlations, respectively. Color bars indicate the display windows of the t-maps of the regression analysis.

highlighted resting BEN in DMN, MTL, and PFC, which have
been implicated in different neuroimaging-based aging and AD
studies (Ries et al., 2008; Ouchi and Kikuchi, 2012; Weiner et al.,
2013; Wang, 2016; Badhwar et al., 2017; Anthony and Lin, 2018).

These findings proved the hypothetical inverse-U shape
BEN model as depicted in Figure 1: resting BEN changed
from cognitively normal controls to AD following an apparent
inverse-U shape; BEN increases with age and pathological
depositions but decreases with longer education years in normal
aging; in the AD continuum, BEN decreases with age and is
not correlated with education anymore as the reserve-based
function compensations fail. Age had deleterious effects on BEN
(BEN increases with age), but the effects were surpassed by a
potential overaction of brain reserve after clinical observable
memory or cognitive problems emerged. Controls and patients
showed opposite age effects on BEN, which can be explained
by the substantially reduced BEN in LMCI and AD. The
lack of education effects in patients may suggest a failure of

the compensation role of BEN especially in later stages of
dementia. Education years showed effects of reducing BEN in
the cognitively normal elderly, but the effects diminished in the
AD continuum, indicating a weakening or failure of the reserve
compensation as suggested by the brain reserve literature (Stern,
2006, 2012; Stern et al., 2018). This compensation weakening
or failure was further supported by the BEN vs. behavior
correlations showing that lower BEN in DMN/MTL/PFC is
correlated to more severe cognitive impairment and daily
functional disability. The opposite BEN evolution processes in
normal controls and the disease continuum were supported by
the AD pathology association findings: higher AD pathology
deposition (reflected by lower CSF Abeta level) is associated
with increased BEN in the cognitively normal elderly, suggesting
an AD pathology–related functional deterioration in normal
aging. In contrast, the pathology–BEN association was switched
to the opposite in the AD continuum showing more brain
pathology corresponding to lower DMN/MTL/PFC BEN. This
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FIGURE 4 | Brain entropy (BEN) vs. cerebrospinal fluid (CSF) Aβ associations in panel (A) controls and (B) MCI and AD. (C) The associations for each sub-group in
precuneus. The red cross in the 4th image in panel (A) indicates the location of the precuneus region of interest. The lines in panel (C) depict the linearly fitted
associations. EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment.

pathology-related BEN reduction (rather than increase) indicates
an escalated demand of compensation triggering a reserve
overaction, which unfortunately cannot be achieved anymore.
The dramatically reduced BEN eventually leads to accelerated
functional impairments as the brain activity still needs a certain
level of entropy to keep its functional flexibility (Tagliazucchi
et al., 2012; Haimovici et al., 2013). Low entropy may also
indicate a low energy state, which is supported by the well-known
hypo-perfusion/hypo-metabolism state found in AD (Johnson
et al., 2005; Ruitenberg et al., 2005; Chao et al., 2009; Hu et al.,
2010; Chen et al., 2011; Musiek et al., 2012; Wang et al., 2013; Liu
et al., 2014; Wang, 2014; Verclytte et al., 2016; Daulatzai, 2017).

The BEN variation patterns from normal aging to the AD
continuum are consistent with our initial finding reported in
2016 (Li and Wang, 2016) and the AD hypo-entropy literature
(Stam et al., 2003; Jeong, 2004; Abásolo et al., 2006; Gómez
and Hornero, 2010; Mizuno et al., 2010; Yang et al., 2013;
Wang et al., 2017). Different from these previous studies, the
current study provided more comprehensive data regarding

the change patterns of BEN across different disease stages,
the associations of BEN to AD pathology, the associations
with age and education, and the link to clinical consequences.
The link of BEN to brain reserve was examined through its
correlation to education years, which is a widely used index
of cognitive reserve. The BEN–brain reserve association was
also evidenced by the correlation to neurobehaviors in the
patients. Although we did not find a significant correlation
between BEN and neurobehavior measures in the healthy
elderly controls, we observed significant negative correlation
between BEN and cognitive function and education years
but significant positive correlation between BEN and age in
866 young healthy adults in a article under peer review. Those
data suggest that BEN vs. neurobehavior correlation in elderly
controls may still exist but require a larger sample size to
be identified.

Brain reserve was proposed to explain the individual
difference of tolerating the pathology-induced functional
alterations (Stern, 2006, 2012; Stern et al., 2018). Because
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FIGURE 5 | Higher brain entropy (BEN) in parietal cortex, temporal cortex associated with more severe impairment of memory (A,C), cognitive (B), and daily
functions (D). Red and cool colors mean positive and negative correlations, respectively. MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal
Learning Test; FAQ, Functional Activity Questionnaire.

brain reserve is non-specific to any overt brain function,
the null-hypothesis resting state activity which play a role
in function facilitation (Raichle et al., 2001; Raichle and
Gusnard, 2002; Raichle, 2006; Pizoli et al., 2011) has been
postulated to be related to brain reserve in several studies
(Arenaza-Urquijo et al., 2013; Bozzali et al., 2015; Marques et al.,
2016; Franzmeier et al., 2017; Li et al., 2020). Different from
these previous studies, the current study focused on regional
resting brain activity, which may either be the action or the
outcome of brain reserve facilitation or compensation. We chose
entropy as the proxy to characterize the neural substrates of
brain reserve because any system including human brain is
prone to errors and deteriorations which inevitably leads to
entropy increase (Finch et al., 2000; Hayflick, 2004, 2007a,b;
Drachman, 2006). Without compensation, brain activity will be
disrupted and provide no function. No matter how functional
compensation by brain reserve works (which is unknown),

the compensation outcome should be a reduction of entropy.
Another rationale for choosing BEN is that BEN is inversely
related to coherence (low BEN means high coherence) and
brain activity coherence has been shown to be fundamental
to high-order brain functions such as memory, attention,
perception, and coordination (Pesaran et al., 2002, 2008; Buzsáki
and Draguhn, 2004; Buzsaki, 2006; Womelsdorf et al., 2006;
Buschman and Miller, 2007; Gregoriou et al., 2009; Schroeder
and Lakatos, 2009; Siegel et al., 2009; Saleh et al., 2010; Hagan
et al., 2011; Buzsáki and Watson, 2012; Dean et al., 2012;
Henry and Obleser, 2012; Lega et al., 2012; Salazar et al., 2012;
Thut et al., 2012; Rigotti et al., 2013; Calderone et al., 2014;
Hawellek et al., 2016; Wong et al., 2016). Loss of temporal
coherence interrupts inter-neuronal then inter-regional
communications. Restoring brain coherence can therefore
fix the related brain dysfunctions. For example, a recent study
showed that enhancing coherence improved memory for older
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people (Reinhart and Nguyen, 2019). However, too much
coherence (very low BEN), such as in the sedation or coma
state (Viertiö-Oja et al., 2004; Perez et al., 2019), will make the
brain too rigid, unable to form variable brain activity patterns.
This situation can happen in the AD continuum because of
the escalated compensation demand from the progressive brain
function deterioration caused by both aging and AD pathology.

Limitations exist in this study. First, these findings were
based on cross-sectional data and must be further confirmed
with longitudinal data. Second, the negative BEN vs. education
correlations seem to be contradictory to a previous large
size study showing positive correlations between BEN and
intelligence (Saxe et al., 2018). We have to note that the
suprathreshold regions between this study and Saxe et al. (2018)
did not overlap with ours mainly in the parietal cortex and theirs
in inferior frontal and temporal regions and cerebellum. In an
independent study based on 862 young healthy adults’ high-
resolution, high signal-to-noise-ratio long rsfMRI data from the
Human Connectome Project, we observed the same negative
education vs. BEN correlations in parietal cortex as well as
prefrontal cortex (Wang, 2020a,b). The consistent findings across
two different cohorts with different age ranges and different
imaging acquisition parameters prove the rigor of the negative
BEN vs. education findings. Third, although the heuristic BEN
model predicts a reserve compensation-related BEN reduction,
the rsfMRI-derived BEN represents the sum of the aging-related
BEN and the compensation-induced BEN reduction and we
cannot separate them. In other words, we cannot assess the
compensation-related BEN reduction independently. A fifth
concern is the physiological noise such as motion, cardiac,
and respiratory pulsations. Although we followed the standard
processing steps for motion correction, residual motion effects
removal, and physiological noise filtering, residual effects may
still exist. As those confounds are unlikely correlated with all
the assessed variables such as age, education, pathology, and
cognitive measures, the major BEN effects identified in this
article should be still related to neuronal events. Finally, BOLD
signal is also contributed by vascular effects. Because vascular
abnormality is a known risk factor of AD, vascular contributions
to BOLD fMRI signal may be even larger than in healthy
controls. Therefore, the observed resting BOLD fMRI-derived
BEN effects likely contained both neuronal and vascular
effects too.

In summary, rsfMRI-derived BEN provides a potential proxy
to assess the brain circuits underlying brain reserve; BEN follows
an inverse-U curve when normal aging progresses into AD. The
heuristic BEN progression model may provide a potential tool
for early detection of AD and disease modification development
given the recent evidence of that resting BEN can be modulated
using non-invasive transcranial magnetic resonance stimulation
(Chang et al., 2018; Song et al., 2018).
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